Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 727
Filtrar
1.
BMC Cardiovasc Disord ; 24(1): 202, 2024 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-38589776

RESUMO

BACKGROUND: The latest evidence indicates that ATP-binding cassette superfamily G member 2 (ABCG2) is critical in regulating lipid metabolism and mediating statin or cholesterol efflux. This study investigates whether the function variant loss within ABCG2 (rs2231142) impacts lipid levels and statin efficiency. METHODS: PubMed, Cochrane Library, Central, CINAHL, and ClinicalTrials.gov were searched until November 18, 2023. RESULTS: Fifteen studies (34,150 individuals) were included in the analysis. The A allele [Glu141Lys amino acid substitution was formed by a transversion from cytosine (C) to adenine (A)] of rs2231142 was linked to lower levels of high-density lipoprotein cholesterol (HDL-C), and higher levels of low-density lipoprotein cholesterol (LDL-C) and total cholesterol (TC). In addition, the A allele of rs2231142 substantially increased the lipid-lowering efficiency of rosuvastatin in Asian individuals with dyslipidemia. Subgroup analysis indicated that the impacts of rs2231142 on lipid levels and statin response were primarily in Asian individuals. CONCLUSIONS: The ABCG2 rs2231142 loss of function variant significantly impacts lipid levels and statin efficiency. Preventive use of rosuvastatin may prevent the onset of coronary artery disease (CAD) in Asian individuals with dyslipidemia.


Assuntos
Dislipidemias , Inibidores de Hidroximetilglutaril-CoA Redutases , Humanos , Inibidores de Hidroximetilglutaril-CoA Redutases/uso terapêutico , Rosuvastatina Cálcica , Predisposição Genética para Doença , LDL-Colesterol/metabolismo , Dislipidemias/diagnóstico , Dislipidemias/tratamento farmacológico , Dislipidemias/genética , Membro 2 da Subfamília G de Transportadores de Cassetes de Ligação de ATP/genética , Membro 2 da Subfamília G de Transportadores de Cassetes de Ligação de ATP/metabolismo , Proteínas de Neoplasias/genética , Proteínas de Neoplasias/metabolismo
2.
Int J Mol Sci ; 25(7)2024 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-38612927

RESUMO

Drug efflux transporters of the ATP-binding-cassette superfamily play a major role in the availability and concentration of drugs at their site of action. ABCC2 (MRP2) and ABCG2 (BCRP) are among the most important drug transporters that determine the pharmacokinetics of many drugs and whose overexpression is associated with cancer chemoresistance. ABCC2 and ABCG2 expression is frequently altered during treatment, thus influencing efficacy and toxicity. Currently, there are no routine approaches available to closely monitor transporter expression. Here, we developed and validated a UPLC-MS/MS method to quantify ABCC2 and ABCG2 in extracellular vesicles (EVs) from cell culture and plasma. In this way, an association between ABCC2 protein levels and transporter activity in HepG2 cells treated with rifampicin and hypericin and their derived EVs was observed. Although ABCG2 was detected in MCF7 cell-derived EVs, the transporter levels in the vesicles did not reflect the expression in the cells. An analysis of plasma EVs from healthy volunteers confirmed, for the first time at the protein level, the presence of both transporters in more than half of the samples. Our findings support the potential of analyzing ABC transporters, and especially ABCC2, in EVs to estimate the transporter expression in HepG2 cells.


Assuntos
Vesículas Extracelulares , Proteína 2 Associada à Farmacorresistência Múltipla , Humanos , Membro 2 da Subfamília G de Transportadores de Cassetes de Ligação de ATP/genética , Cromatografia Líquida , Proteínas de Neoplasias/genética , Espectrometria de Massas em Tandem , Proteínas de Membrana Transportadoras
3.
J Food Drug Anal ; 32(1): 103-111, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38526588

RESUMO

Magnoliae Officinalis Cortex (MOC), an herbal drug, contains polyphenolic lignans mainly magnolol (MN) and honokiol (HK). Methotrexate (MTX), a critical drug for cancers and autoimmune deseases, is a substrate of multidrug resistance-associated protein 2 (MRP2) and breast cancer resistance protein (BCRP). This study investigated the effect of coadministration of MOC on the pharmacokinetics of MTX and relevant mechanisms. Sprague-Dawley rats were orally administered MTX alone and with single dose (2.0 and 4.0 g/kg) and repeated seven doses of MOC (2.0 g/kg thrice daily for 2 days, the 7th dose given at 0.5 h before MTX). The serum concentrations of MTX were determined by a fluorescence polarization immunoassay. The results showed that a single dose of MOC at 2.0 g/kg significantly increased the AUC0-t and MRT of MTX by 352% and 308%, and a single dose at 4.0 g/kg significantly enhanced the AUC0-t and MRT by 362% and 291%, respectively. Likewise, repeated seven doses of MOC at 2.0 g/kg significantly increased the AUC0-t and MRT of MTX by 461% and 334%, respectively. Mechanism studies indicated that the function of MRP2 was significantly inhibited by MN, HK and the serum metabolites of MOC (MOCM), whereas BCRP was not inhibited by MOCM. In conclusion, coadministration of MOC markedly enhanced the systemic exposure and mean residence time of MTX through inhibiting the MRP2-mediated excretion of MTX.


Assuntos
Compostos Alílicos , Compostos de Bifenilo , Interações Ervas-Drogas , Lignanas , Proteína 2 Associada à Farmacorresistência Múltipla , Fenóis , Ratos , Animais , Ratos Sprague-Dawley , Membro 2 da Subfamília G de Transportadores de Cassetes de Ligação de ATP/genética , Metotrexato/farmacologia , Proteínas de Neoplasias
4.
Fluids Barriers CNS ; 21(1): 27, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38491505

RESUMO

BACKGROUND: A principal protective component of the mammalian blood-brain barrier (BBB) is the high expression of the multidrug efflux transporters P-glycoprotein (P-gp, encoded by ABCB1) and ABCG2 (encoded by ABCG2) on the lumenal surface of endothelial cells. The zebrafish P-gp homolog Abcb4 is expressed at the BBB and phenocopies human P-gp. Comparatively little is known about the four zebrafish homologs of the human ABCG2 gene: abcg2a, abcg2b, abcg2c, and abcg2d. Here we report the functional characterization and brain tissue distribution of zebrafish ABCG2 homologs. METHODS: To determine substrates of the transporters, we stably expressed each in HEK-293 cells and performed cytotoxicity and fluorescent efflux assays with known ABCG2 substrates. To assess the expression of transporter homologs, we used a combination of RNAscope in situ hybridization probes and immunohistochemistry to stain paraffin-embedded sections of adult and larval zebrafish. RESULTS: We found Abcg2a had the greatest substrate overlap with ABCG2, and Abcg2d appeared to be the least functionally similar. We identified abcg2a as the only homolog expressed at the adult and larval zebrafish BBB, based on its localization to claudin-5 positive brain vasculature. CONCLUSIONS: These results demonstrate the conserved function of zebrafish Abcg2a and suggest that zebrafish may be an appropriate model organism for studying the role of ABCG2 at the BBB.


Assuntos
Membro 2 da Subfamília G de Transportadores de Cassetes de Ligação de ATP , Barreira Hematoencefálica , Peixe-Zebra , Adulto , Animais , Humanos , Membro 2 da Subfamília G de Transportadores de Cassetes de Ligação de ATP/genética , Membro 2 da Subfamília G de Transportadores de Cassetes de Ligação de ATP/metabolismo , Barreira Hematoencefálica/metabolismo , Células Endoteliais/metabolismo , Células HEK293 , Mamíferos/metabolismo , Proteínas de Neoplasias/genética , Proteínas de Neoplasias/metabolismo , Peixe-Zebra/metabolismo
5.
Mol Genet Genomic Med ; 12(3): e2362, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38451012

RESUMO

BACKGROUND: The ABCG2 421C/A polymorphism contributes significantly to the distribution and absorption of antiretroviral (ARV) regimens and is associated with the undesirable side effects of efavirenz. METHODS: To investigate this, we examined ABCG2 34G/A (rs2231137) and 421C/A (rs2231142) genetic variations in 149 HIV-infected patients (116 without hepatotoxicity, 33 with ARV-induced hepatotoxicity) and 151 healthy controls through the PCR-restriction fragment length polymorphism (PCR-RFLP) technique. RESULTS AND DISCUSSION: The ABCG2 34GA genotype and 34A allele indicated a risk for antiretroviral therapy-associated hepatotoxicity development (p = 0.09, OR = 1.58, 95% CI: 0.93-2.69; p = 0.06, OR = 1.50, 95% CI: 0.98-2.30). The haplotype GA was associated with hepatotoxicity (p = 0.042, OR = 2.37, 95% CI: 1.04-5.43; p = 0.042, OR = 2.49, 95% CI: 1.04-5.96). Moreover, when comparing HIV patients with hepatotoxicity to healthy controls, the haplotype GA had an association with an elevated risk for the development of hepatotoxicity (p = 0.041, OR = 1.73, 95% CI: 1.02-2.93). Additionally, the association of the ABCG2 34GA genotype with the progression of HIV (p = 0.02, OR = 1.97, 95% CI: 1.07-3.63) indicated a risk for advanced HIV infection. Furthermore, the ABCG2 421AA genotype was linked to tobacco users and featured as a risk factor for the progression of HIV disease (p = 0.03, OR = 11.07, 95% CI: 1.09-270.89). CONCLUSION: The haplotype GA may enhance the risk of hepatotoxicity development and its severity. Individuals with the ABCG2 34A allele may also be at risk for the development of hepatotoxicity. Additionally, individuals with an advanced stage of HIV and the ABCG2 34GA genotype may be at risk for disease progression.


Assuntos
Doença Hepática Induzida por Substâncias e Drogas , Infecções por HIV , Humanos , Infecções por HIV/tratamento farmacológico , Infecções por HIV/genética , Infecções por HIV/complicações , Polimorfismo de Nucleotídeo Único , Genótipo , Fatores de Risco , Doença Hepática Induzida por Substâncias e Drogas/genética , Membro 2 da Subfamília G de Transportadores de Cassetes de Ligação de ATP/genética , Proteínas de Neoplasias/genética
6.
Int J Mol Med ; 53(4)2024 04.
Artigo em Inglês | MEDLINE | ID: mdl-38426604

RESUMO

The effects of adipocyte­rich microenvironment (ARM) on chemoresistance have garnered increasing interest. Ovarian cancer (OVCA) is a representative adipocyte­rich associated cancer. In the present study, epithelial OVCA (EOC) was used to investigate the influence of ARM on chemoresistance with the aim of identifying novel targets and developing novel strategies to reduce chemoresistance. Bioinformatics analysis was used to explore the effects of ARM­associated mechanisms contributing to chemoresistance and treated EOC cells, primarily OVCAR3 cells, with human adipose tissue extracts (HATES) from the peritumoral adipose tissue of patients were used to mimic ARM in vitro. Specifically, the peroxisome proliferator­activated receptor Î³ (PPARγ) antagonist GW9662 and the ABC transporter G family member 2 (ABCG2) inhibitor KO143, were used to determine the underlying mechanisms. Next, the effect of HATES on the expression of PPARγ and ABCG2 in OVCAR3 cells treated with cisplatin (DDP) and paclitaxel (PTX) was determined. Additionally, the association between PPARγ, ABCG2 and chemoresistance in EOC specimens was assessed. To evaluate the effect of inhibiting PPARγ, using DDP, a nude mouse model injected with OVCAR3­shPPARγ cells and a C57BL/6 model injected with ID8 cells treated with GW9662 were established. Finally, the factors within ARM that contributed to the mechanism were determined. It was found that HATES promoted chemoresistance by increasing ABCG2 expression via PPARγ. Expression of PPARγ/ABCG2 was related to chemoresistance in EOC clinical specimens. GW9662 or knockdown of PPARγ improved the efficacy of chemotherapy in mice. Finally, angiogenin and oleic acid played key roles in HATES in the upregulation of PPARγ. The present study showed that the introduction of ARM­educated PPARγ attenuated chemoresistance in EOC, highlighting a potentially novel therapeutic adjuvant to chemotherapy and shedding light on a means of improving the efficacy of chemotherapy from the perspective of ARM.


Assuntos
Anilidas , Neoplasias Ovarianas , Animais , Feminino , Humanos , Camundongos , Adipócitos/metabolismo , Apoptose , Membro 2 da Subfamília G de Transportadores de Cassetes de Ligação de ATP/genética , Membro 2 da Subfamília G de Transportadores de Cassetes de Ligação de ATP/metabolismo , Carcinoma Epitelial do Ovário/tratamento farmacológico , Linhagem Celular Tumoral , Resistencia a Medicamentos Antineoplásicos/genética , Camundongos Endogâmicos C57BL , Proteínas de Neoplasias/genética , Proteínas de Neoplasias/metabolismo , Neoplasias Ovarianas/tratamento farmacológico , Neoplasias Ovarianas/genética , Neoplasias Ovarianas/metabolismo , PPAR gama/genética , PPAR gama/metabolismo , Microambiente Tumoral , Regulação para Cima
7.
Mol Med Rep ; 29(5)2024 05.
Artigo em Inglês | MEDLINE | ID: mdl-38488034

RESUMO

Pancreatic ductal adenocarcinoma (PDAC) is the most prevalent and aggressive form of pancreatic cancer. Gemcitabine (GEM), the first­line treatment for PDAC, which alleviates symptoms and enhances the quality of life of patients. However, it is prone to lead to the development of drug resistance during treatment. Interferon (IFN)­Î³ exhibits antitumor and immunomodulatory properties. The present study aimed to explore the impact of IFN­Î³ on the viability, migration and apoptosis of GEM­resistant pancreatic cancer cells. Firstly, a GEM­resistant pancreatic cancer cell line, named PANC­1/GEM, was constructed. Hematoxylin and eosin staining analyzed the cell morphology, whereas reverse transcription­quantitative PCR (RT­qPCR) assessed the expression levels of the drug­resistance genes multidrug resistance­associated protein (MRP) and breast cancer resistance protein (BCRP). The MTT assay and cell counting techniques were used to determine the appropriate concentration of IFN­y and its effects on cell viability. The IFN­Î³­induced apoptosis of PANC­1/GEM cells was assessed using an Apoptosis Detection Kit, whereas the impact of IFN­Î³ on the migration of these cells was evaluated using a wound­healing assay. The MTT assay revealed a resistance index of 22.4 in the PANC­1/GEM cell line. RT­qPCR indicated that, compared with in wild­type cells, the PANC­1/GEM resistant strain exhibited lower MRP and higher BCRP mRNA expression levels. The optimal concentration of IFN­Î³ for affecting PANC­1/GEM cells was determined to be 0.3 µg/ml. At this concentration, IFN­Î³ induced PANC­1/GEM cell apoptosis, along with a notable reduction in migration. Following treatment of PANC­1/GEM cells with IFN­Î³, MRP expression increased whereas BCRP mRNA expression decreased, indicating a reversal in their drug­resistance gene expression. In conclusion, IFN­Î³ exhibited antitumor immune properties by upregulating MRP and downregulating BCRP expression, reversing drug­resistance gene expression, and reducing cell viability and migration, while promoting apoptosis in PANC­1/GEM cells. IFN­Î³ could potentially serve as a treatment option for patients with GEM­resistant pancreatic cancer.


Assuntos
Carcinoma Ductal Pancreático , Neoplasias Pancreáticas , Humanos , Gencitabina , Membro 2 da Subfamília G de Transportadores de Cassetes de Ligação de ATP/genética , Desoxicitidina/farmacologia , Qualidade de Vida , Resistencia a Medicamentos Antineoplásicos/genética , Linhagem Celular Tumoral , Proteínas de Neoplasias/metabolismo , Neoplasias Pancreáticas/tratamento farmacológico , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/metabolismo , Carcinoma Ductal Pancreático/tratamento farmacológico , Carcinoma Ductal Pancreático/genética , Carcinoma Ductal Pancreático/metabolismo , Apoptose , RNA Mensageiro
8.
Int J Mol Sci ; 25(6)2024 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-38542090

RESUMO

Gliomas are notably challenging to treat due to their invasive nature and resistance to conventional therapies. The ABCG2 protein has attracted attention for its role in multidrug resistance, complicating treatment effectiveness. This study scrutinized the relationship between ABCG2 expression and glioma grade and the role of ABCG2 in the process of glioma progression, aiming to evaluate ABCG2 expression as a predictive factor of tumor progression and patient survival. Conducted at Dubrava University Hospital, Zagreb, Croatia, the study analyzed 152 glioma specimens from 2013 to 2022, assessing ABCG2 expression alongside standard clinical markers. A significant association was found between patients' survival and the ABCG2 profile (p = 0.003, r = 0.24), separately for patients who underwent chemotherapy (p = 0.0004, r = 0.32) and radiotherapy (p = 0.003, r = 0.29). Furthermore, the ABCG2 profile was significantly associated with disease progression (p = 0.007, r = 0.23), tumor grade (p = 0.0002, r = 0.31), and Ki67 expression (p = 0.0004, r = 0.31). ABCG2-positive tumor cells only showed association with Ki67 expression (p = 0.002, r = 0.28). The ABCG2 profile was found to affect the overall patient survival (p = 0.02) and represent a moderate indicator of tumor progression (p = 0.01), unlike the percentage of ABCG2-positive tumor cells. ABCG2 may serve as a marker of angiogenesis and vascular abnormalities within tumors, predicting glioma progression and treatment response. Targeting ABCG2 could enhance chemoradiotherapy efficacy and improve patient outcomes, which highlights its value in assessing tumor aggressiveness and designing treatment strategies.


Assuntos
Neoplasias Encefálicas , Glioma , Humanos , Neoplasias Encefálicas/metabolismo , Antígeno Ki-67/metabolismo , Glioma/metabolismo , Resultado do Tratamento , Membro 2 da Subfamília G de Transportadores de Cassetes de Ligação de ATP/genética , Proteínas de Neoplasias/metabolismo
9.
Environ Toxicol Pharmacol ; 107: 104421, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38493880

RESUMO

Thiabendazole (TBZ) is a broad-spectrum anthelmintic and fungicide used in humans, animals, and agricultural commodities. TBZ residues are present in crops and animal products, including milk, posing a risk to food safety and public health. ABCG2 is a membrane transporter which affects bioavailability and milk secretion of xenobiotics. Therefore, the aim of this work was to characterize the role of ABCG2 in the in vitro transport and secretion into milk of 5-hydroxythiabendazole (5OH-TBZ), the main TBZ metabolite. Using MDCK-II polarized cells transduced with several species variants of ABCG2, we first demonstrated that 5OH-TBZ is efficiently in vitro transported by ABCG2. Subsequently, using Abcg2 knockout mice, we demonstrated that 5OH-TBZ secretion into milk was affected by Abcg2, with a more than 2-fold higher milk concentration and milk to plasma ratio in wild-type mice compared to their Abcg2-/- counterpart.


Assuntos
Leite , Tiabendazol , Humanos , Feminino , Camundongos , Animais , Leite/química , Tiabendazol/química , Tiabendazol/metabolismo , Membro 2 da Subfamília G de Transportadores de Cassetes de Ligação de ATP/genética , Membro 2 da Subfamília G de Transportadores de Cassetes de Ligação de ATP/metabolismo , Xenobióticos , Lactação , Proteínas de Neoplasias/genética , Proteínas de Neoplasias/metabolismo
10.
Drug Resist Updat ; 73: 101028, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38340425

RESUMO

AIMS: The overexpression of ABC transporters on cancer cell membranes is one of the most common causes of multidrug resistance (MDR). This study investigates the impact of ABCC1 and ABCG2 on the resistance to talazoparib (BMN-673), a potent poly (ADP-ribose) polymerase (PARP) inhibitor, in ovarian cancer treatment. METHODS: The cell viability test was used to indicate the effect of talazoparib in different cell lines. Computational molecular docking analysis was conducted to simulate the interaction between talazoparib and ABCC1 or ABCG2. The mechanism of talazoparib resistance was investigated by constructing talazoparib-resistant subline A2780/T4 from A2780 through drug selection with gradually increasing talazoparib concentration. RESULTS: Talazoparib cytotoxicity decreased in drug-selected or gene-transfected cell lines overexpressing ABCC1 or ABCG2 but can be restored by ABCC1 or ABCG2 inhibitors. Talazoparib competitively inhibited substrate drug efflux activity of ABCC1 or ABCG2. Upregulated ABCC1 and ABCG2 protein expression on the plasma membrane of A2780/T4 cells enhances resistance to other substrate drugs, which could be overcome by the knockout of either gene. In vivo experiments confirmed the retention of drug-resistant characteristics in tumor xenograft mouse models. CONCLUSIONS: The therapeutic efficacy of talazoparib in cancer may be compromised by its susceptibility to MDR, which is attributed to its interactions with the ABCC1 or ABCG2 transporters. The overexpression of these transporters can potentially diminish the therapeutic impact of talazoparib in cancer treatment.


Assuntos
Antineoplásicos , Neoplasias Ovarianas , Ftalazinas , Humanos , Animais , Feminino , Camundongos , Ribose/farmacologia , Subfamília B de Transportador de Cassetes de Ligação de ATP , Inibidores de Poli(ADP-Ribose) Polimerases/farmacologia , Inibidores de Poli(ADP-Ribose) Polimerases/uso terapêutico , Linhagem Celular Tumoral , Simulação de Acoplamento Molecular , Resistencia a Medicamentos Antineoplásicos/genética , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Antineoplásicos/química , Membro 2 da Subfamília G de Transportadores de Cassetes de Ligação de ATP/genética , Membro 2 da Subfamília G de Transportadores de Cassetes de Ligação de ATP/metabolismo , Proteínas de Neoplasias
11.
Drug Resist Updat ; 73: 101066, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38387283

RESUMO

ABCG2 is an important ATP-binding cassette transporter impacting the absorption and distribution of over 200 chemical toxins and drugs. ABCG2 also reduces the cellular accumulation of diverse chemotherapeutic agents. Acquired somatic mutations in the phylogenetically conserved amino acids of ABCG2 might provide unique insights into its molecular mechanisms of transport. Here, we identify a tumor-derived somatic mutation (Q393K) that occurs in a highly conserved amino acid across mammalian species. This ABCG2 mutant seems incapable of providing ABCG2-mediated drug resistance. This was perplexing because it is localized properly and retained interaction with substrates and nucleotides. Using a conformationally sensitive antibody, we show that this mutant appears "locked" in a non-functional conformation. Structural modeling and molecular dynamics simulations based on ABCG2 cryo-EM structures suggested that the Q393K interacts with the E446 to create a strong salt bridge. The salt bridge is proposed to stabilize the inward-facing conformation, resulting in an impaired transporter that lacks the flexibility to readily change conformation, thereby disrupting the necessary communication between substrate binding and transport.


Assuntos
Transportadores de Cassetes de Ligação de ATP , Neoplasias , Humanos , Animais , Transportadores de Cassetes de Ligação de ATP/metabolismo , Mutação , Resistência a Medicamentos , Neoplasias/tratamento farmacológico , Neoplasias/genética , Resistencia a Medicamentos Antineoplásicos/genética , Mamíferos/metabolismo , Membro 2 da Subfamília G de Transportadores de Cassetes de Ligação de ATP/genética , Membro 2 da Subfamília G de Transportadores de Cassetes de Ligação de ATP/metabolismo , Proteínas de Neoplasias/genética , Proteínas de Neoplasias/metabolismo
12.
Clin Pharmacokinet ; 63(4): 483-496, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38424308

RESUMO

BACKGROUND AND OBJECTIVES: Encorafenib is a kinase inhibitor indicated for the treatment of patients with unresectable or metastatic melanoma or metastatic colorectal cancer, respectively, with selected BRAF V600 mutations. A clinical drug-drug interaction (DDI) study was designed to evaluate the effect of encorafenib on rosuvastatin, a sensitive substrate of OATP1B1/3 and breast cancer resistance protein (BCRP), and bupropion, a sensitive CYP2B6 substrate. Coproporphyrin I (CP-I), an endogenous substrate for OATP1B1, was measured in a separate study to deconvolute the mechanism of transporter DDI. METHODS: DDI study participants received a single oral dose of rosuvastatin (10 mg) and bupropion (75 mg) on days - 7, 1, and 14 and continuous doses of encorafenib (450 mg QD) and binimetinib (45 mg BID) starting on day 1. The CP-I data were collected from participants in a phase 3 study who received encorafenib (300 mg QD) and cetuximab (400 mg/m2 initial dose, then 250 mg/m2 QW). Pharmacokinetic and pharmacodynamic analysis was performed using noncompartmental and compartmental methods. RESULTS: Bupropion exposure was not increased, whereas rosuvastatin Cmax and area under the receiver operating characteristic curve (AUC) increased approximately 2.7 and 1.6-fold, respectively, following repeated doses of encorafenib and binimetinib. Increase in CP-I was minimal, suggesting that the primary effect of encorafenib on rosuvastatin is through BCRP. Categorization of statins on the basis of their metabolic and transporter profile suggests pravastatin would have the least potential for interaction when coadministered with encorafenib. CONCLUSION: The results from these clinical studies suggest that encorafenib does not cause clinically relevant CYP2B6 induction or inhibition but is an inhibitor of BCRP and may also inhibit OATP1B1/3 to a lesser extent. Based on these results, it may be necessary to consider switching statins or reducing statin dosage accordingly for coadministration with encorafenib. CLINICAL TRIAL REGISTRATION: ClinicalTrials.gov NCT03864042, registered 6 March 2019.


Assuntos
Bupropiona , Carbamatos , Coproporfirinas , Interações Medicamentosas , Inibidores de Hidroximetilglutaril-CoA Redutases , Rosuvastatina Cálcica , Sulfonamidas , Humanos , Rosuvastatina Cálcica/farmacocinética , Rosuvastatina Cálcica/administração & dosagem , Masculino , Feminino , Pessoa de Meia-Idade , Adulto , Sulfonamidas/administração & dosagem , Sulfonamidas/farmacocinética , Sulfonamidas/farmacologia , Carbamatos/administração & dosagem , Carbamatos/farmacocinética , Bupropiona/administração & dosagem , Bupropiona/farmacocinética , Inibidores de Hidroximetilglutaril-CoA Redutases/farmacocinética , Inibidores de Hidroximetilglutaril-CoA Redutases/administração & dosagem , Transportador 1 de Ânion Orgânico Específico do Fígado/antagonistas & inibidores , Transportador 1 de Ânion Orgânico Específico do Fígado/genética , Transportador 1 de Ânion Orgânico Específico do Fígado/metabolismo , Idoso , Membro 2 da Subfamília G de Transportadores de Cassetes de Ligação de ATP/metabolismo , Membro 2 da Subfamília G de Transportadores de Cassetes de Ligação de ATP/genética , Adulto Jovem
13.
Thorac Cancer ; 15(10): 820-829, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38409918

RESUMO

BACKGROUND: N-acetyltransferase 10 (NAT10) serves as a critical enzyme in mediating the N4-acetylcytidine (ac4C) that ensures RNA stability and effective translation processes. The role of NAT10 in driving the advancement of breast cancer remains uninvestigated. METHODS: We observed an increase in NAT10 expression, both at mRNA level through the analysis of the Cancer Genome Atlas (TCGA) database and at the protein level of tumor tissues from breast cancer patients. We determined that a heightened expression of NAT10 served as a predictor of an unfavorable clinical outcome. By screening the Cancer Cell Line Encyclopedia (CCLE) cell bank, this expression pattern of NAT10 was consistency found across almost all the classic breast cancer cell lines. RESULTS: Functionally, interference of NAT10 expression exerts an inhibitory effect on proliferation and invasion of breast cancer cells. By using ac4C RNA immunoprecipitation (ac4c-RIP) and acRIP-qPCR assays, we identified a reduction of ac4C enrichment within the ATP binding cassette (ABC) transporters, multidrug resistance protein 1 (MDR1) and breast cancer resistance protein (BCRP), consequent to NAT10 suppression. Expressions of MDR1 and BCRP exhibited a positive correlation with NAT10 expression in tumor tissues, and the inhibition of NAT10 in breast cancer cells resulted in a decrease of MDR1 and BCRP expression. Therefore, the overexpressing of MDR1 and BCRP could partially rescue the adverse consequences of NAT10 depletion. In addition, we found that, remodelin, a NAT10 inhibitor, reinstated the susceptibility of capecitabine-resistant breast cancer cells to the chemotherapy, both in vitro and in vivo. CONCLUSION: The results of our study demonstrated the essential role of NAT10-mediated ac4c-modification in breast cancer progression and provide a novel strategy for overcoming chemoresistance challenges.


Assuntos
Membro 1 da Subfamília B de Cassetes de Ligação de ATP , Neoplasias da Mama , Citidina , Feminino , Humanos , Membro 1 da Subfamília B de Cassetes de Ligação de ATP/genética , Membro 1 da Subfamília B de Cassetes de Ligação de ATP/metabolismo , Membro 2 da Subfamília G de Transportadores de Cassetes de Ligação de ATP/genética , Transportadores de Cassetes de Ligação de ATP/genética , Transportadores de Cassetes de Ligação de ATP/metabolismo , Neoplasias da Mama/patologia , Citidina/análogos & derivados , Acetiltransferases N-Terminal/metabolismo , Proteínas de Neoplasias/genética , Proteínas de Neoplasias/metabolismo , RNA Mensageiro/genética
15.
Toxicol Lett ; 394: 57-65, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38423481

RESUMO

Drug transporters are among the factors that determine the pharmacokinetic profiles after drug administration. In this study, we investigated the roles of drug transporters involved in transport of SN-38, which is an active metabolite of irinotecan, in the intestine under inflammatory conditions in vitro and determined their functional consequences. The expression alterations of breast cancer resistance protein (BCRP) and organic anion transporting polypeptide (OATP) 2B1 were determined at the mRNA and protein levels, and the subsequent functional alterations were evaluated via an accumulation study with the representative transporter substrates [prazosin and dibromofluorescein (DBF)] and SN-38. We also determined the cytotoxicity of SN-38 under inflammatory conditions. Decreased BCRP expression and increased OATP2B1 expression were observed under inflammatory conditions in vitro, which led to altered accumulation profiles of prazosin, DBF, and SN-38, and the subsequent cytotoxic profiles of SN-38. Treatment with rifampin or novobiocin supported the significant roles of BCRP and OATP2B1 in the transport and cytotoxic profile of SN-38. Collectively, these results suggest that BCRP and OATP2B1 are involved in the increased cytotoxicity of SN-38 under inflammatory conditions in vitro. Further comprehensive research is warranted to completely understand SN-38-induced gastrointestinal cytotoxicity and aid in the successful treatment of cancer with irinotecan.


Assuntos
Antineoplásicos , Neoplasias da Mama , Transportadores de Ânions Orgânicos , Humanos , Feminino , Irinotecano , Membro 2 da Subfamília G de Transportadores de Cassetes de Ligação de ATP/genética , Proteínas de Neoplasias/genética , Proteínas de Neoplasias/metabolismo , Transportadores de Ânions Orgânicos/genética , Transportadores de Ânions Orgânicos/metabolismo , Proteínas de Membrana Transportadoras , Prazosina , Neoplasias da Mama/tratamento farmacológico
16.
BMC Cancer ; 24(1): 185, 2024 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-38326737

RESUMO

BACKGROUND: Predicting tumor responses to neoadjuvant chemotherapy (NAC) is critical for evaluating prognosis and designing treatment strategies for patients with breast cancer; however, there are no reliable biomarkers that can effectively assess tumor responses. Therefore, we aimed to evaluate the clinical feasibility of using extracellular vesicles (EVs) to predict tumor response after NAC. METHODS: Drug-resistant triple-negative breast cancer (TNBC) cell lines were successfully established, which developed specific morphologies and rapidly growing features. To detect resistance to chemotherapeutic drugs, EVs were isolated from cultured cells and plasma samples collected post-NAC from 36 patients with breast cancer. RESULTS: Among the differentially expressed gene profiles between parental and drug-resistant cell lines, drug efflux transporters such as MDR1, MRP1, and BCRP were highly expressed in resistant cell lines. Drug efflux transporters have been identified not only in cell lines but also in EVs released from parental cells using immunoaffinity-based EV isolation. The expression of drug resistance markers in EVs was relatively high in patients with residual disease compared to those with a pathological complete response. CONCLUSIONS: The optimal combination of drug-resistant EV markers was significantly efficient in predicting resistance to NAC with 81.82% sensitivity and 92.86% specificity.


Assuntos
Vesículas Extracelulares , Neoplasias de Mama Triplo Negativas , Humanos , Neoplasias de Mama Triplo Negativas/tratamento farmacológico , Neoplasias de Mama Triplo Negativas/genética , Neoplasias de Mama Triplo Negativas/patologia , Terapia Neoadjuvante , Membro 2 da Subfamília G de Transportadores de Cassetes de Ligação de ATP/genética , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Biomarcadores Tumorais/metabolismo , Proteínas de Neoplasias/metabolismo , Vesículas Extracelulares/metabolismo
18.
Cancer Chemother Pharmacol ; 93(5): 427-437, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38226983

RESUMO

PURPOSE: Drug efflux transporter associated multi-drug resistance (MDR) is a potential limitation in the use of taxane chemotherapies for the treatment of metastatic melanoma. ABT-751 is an orally bioavailable microtubule-binding agent capable of overcoming MDR and proposed as an alternative to taxane-based therapies. METHODS: This study compares ABT-751 to taxanes in vitro, utilizing seven melanoma cell line models, publicly available gene expression and drug sensitivity databases, a lung cancer cell line model of MDR drug efflux transporter overexpression (DLKP-A), and drug efflux transporter ATPase assays. RESULTS: Melanoma cell lines exhibit a low but variable protein and RNA expression of drug efflux transporters P-gp, BCRP, and MDR3. Expression of P-gp and MDR3 correlates with sensitivity to taxanes, but not to ABT-751. The anti-proliferative IC50 profile of ABT-751 was higher than the taxanes docetaxel and paclitaxel in the melanoma cell line panel, but fell within clinically achievable parameters. ABT-751 IC50 was not impacted by P-gp-overexpression in DKLP-A cells, which display strong resistance to the P-gp substrate taxanes compared to DLKP parental controls. The addition of ABT-751 to paclitaxel treatment significantly decreased cell proliferation, suggesting some reversal of MDR. ATPase activity assays suggest that ABT-751 is a potential BCRP substrate, with the ability to inhibit P-gp ATPase activity. CONCLUSION: Our study confirms that ABT-751 is active against melanoma cell lines and models of MDR at physiologically relevant concentrations, it inhibits P-gp ATPase activity, and it may be a BCRP and/or MDR3 substrate. ABT-751 warrants further investigation alone or in tandem with other drug efflux transporter inhibitors for hard-to-treat MDR melanoma.


Assuntos
Resistência a Múltiplos Medicamentos , Resistencia a Medicamentos Antineoplásicos , Melanoma , Sulfonamidas , Humanos , Melanoma/tratamento farmacológico , Melanoma/patologia , Melanoma/genética , Melanoma/metabolismo , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Sulfonamidas/farmacologia , Linhagem Celular Tumoral , Resistência a Múltiplos Medicamentos/efeitos dos fármacos , Taxoides/farmacologia , Proliferação de Células/efeitos dos fármacos , Antimitóticos/farmacologia , Antineoplásicos/farmacologia , Membro 2 da Subfamília G de Transportadores de Cassetes de Ligação de ATP/genética , Membro 2 da Subfamília G de Transportadores de Cassetes de Ligação de ATP/metabolismo , Membro 2 da Subfamília G de Transportadores de Cassetes de Ligação de ATP/antagonistas & inibidores
19.
J Acquir Immune Defic Syndr ; 95(3): 297-303, 2024 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-38180896

RESUMO

BACKGROUND: Dolutegravir plasma concentrations and pharmacokinetic (PK) parameters in children display considerable variability. Here, the impact of genetic variants in ABCG2 421C>A (rs2231142), NR1I2 63396 C>T (rs2472677), and UGT1A1 (rs5839491) on dolutegravir PK was examined. METHODS: Children defined by age and administered dolutegravir formulation had AUC 24 at steady state, C max and C 24h determined. Associations between genetic variants and PK parameters were assessed using the dominant inheritance model. RESULTS: The 59 children studied had a median age of 4.6 years, log 10 plasma HIV RNA of 4.79 (copies/mm 3 ), and CD4 + lymphocyte count of 1041 cells/mm 3 ; 51% were female. For ABCG2 , participants with ≥1 minor allele had lower adjusted mean AUC difference (hr*mg/L) controlling for weight at entry, cohort and sex (-15.7, 95% CI: [-32.0 to 0.6], P = 0.06), and log 10 C max adjusted mean difference (-0.15, 95% CI: [-0.25 to -0.05], P = 0.003). Participants with ≥1 minor allele had higher adjusted mean AUC difference (11.9, 95% CI: [-1.1 to 25.0], P = 0.07). For UGT1A1 , poor metabolizers had nonsignificant higher concentrations (adjusted log 10 C max mean difference 11.8; 95% CI: [-12.3 to 36.0], P = 0.34) and lower mean log 10 adjusted oral clearance -0.13 L/h (95% CI: [-0.3 to 0.06], P = 0.16). No association was identified between time-averaged AUC differences by genotype for adverse events, plasma HIV RNA, or CD4 + cell counts. CONCLUSIONS: Dolutegravir AUC 24 for genetic variants in ABCG2 , NR1l2 , and UGT1A1 varied from -25% to +33%. These findings help to explain some of the variable pharmacokinetics identified with dolutegravir in children.


Assuntos
Infecções por HIV , Oxazinas , Piperazinas , Criança , Humanos , Feminino , Pré-Escolar , Masculino , Receptor de Pregnano X/genética , Infecções por HIV/tratamento farmacológico , Infecções por HIV/genética , Genótipo , Compostos Heterocíclicos com 3 Anéis , Piridonas , RNA , Membro 2 da Subfamília G de Transportadores de Cassetes de Ligação de ATP/genética , Proteínas de Neoplasias/genética
20.
Mol Oncol ; 18(2): 280-290, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37727134

RESUMO

Success of chemotherapy is often hampered by multidrug resistance. One mechanism for drug resistance is the elimination of anticancer drugs through drug transporters, such as breast cancer resistance protein (BCRP; also known as ABCG2), and causes a poor 5-year survival rate of human patients. Co-treatment of chemotherapeutics and natural compounds, such as baicalein, is used to prevent chemotherapeutic resistance but is limited by rapid metabolism. Boron-based clusters as meta-carborane are very promising phenyl mimetics to increase target affinity; we therefore investigated the replacement of a phenyl ring in baicalein by a meta-carborane to improve its affinity towards the human ABCG2 efflux transporter. Baicalein strongly inhibited the ABCG2-mediated efflux and caused a fivefold increase in mitoxantrone cytotoxicity. Whereas the baicalein derivative 5,6,7-trimethoxyflavone inhibited ABCG2 efflux activity in a concentration of 5 µm without reversing mitoxantrone resistance, its carborane analogue 5,6,7-trimethoxyborcalein significantly enhanced the inhibitory effects in nanomolar ranges (0.1 µm) and caused a stronger increase in mitoxantrone toxicity reaching similar values as Ko143, a potent ABCG2 inhibitor. Overall, in silico docking and in vitro studies demonstrated that the modification of baicalein with meta-carborane and three methoxy substituents leads to an enhanced reversal of ABCG2-mediated drug resistance. Thus, this seems to be a promising basis for the development of efficient ABCG2 inhibitors.


Assuntos
Antineoplásicos , Flavanonas , Mitoxantrona , Humanos , Mitoxantrona/farmacologia , Membro 2 da Subfamília G de Transportadores de Cassetes de Ligação de ATP/genética , Membro 2 da Subfamília G de Transportadores de Cassetes de Ligação de ATP/metabolismo , Resistencia a Medicamentos Antineoplásicos , Proteínas de Neoplasias/metabolismo , Antineoplásicos/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...